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Multiple steady flow patterns occur in surface-tension/buoyancy-driven convection 
in a liquid layer heated from below (Rayleigh-BQnard-Marangoni flows). Techniques 
of numerical bifurcation theory are used to study the multiplicity and stability of 
two-dimensional steady flow patterns (rolls) in rectangular small-aspect-ratio 
containers as the aspect ratio is varied. For pure Marangoni flows at moderate Biot 
and Prandtl number, the transitions occurring when paths of codimension 1 
singularities intersect determine to a large extent the multiplicity of stable patterns. 
These transitions also lead, for example, to Hopf bifurcations and stable periodic 
flows for a small range in aspect ratio. The influence of the type of lateral walls on 
the multiplicity of steady states is considered. ‘No-slip’ lateral walls lead to 
hysteresis effects and typically restrict the number of stable flow patterns (with 
respect to ‘ slippery ’ sidewalls) through the occurrence of saddle node bifurcations. 
In this way ‘no-slip ’ sidewalls induce a selection of certain patterns, which typically 
have the largest Nusselt number, through secondary bifurcation. 

1. Introduction 
Variations in surface tension along a gas-liquid interface induce a shear stress on 

the interface. Therefore, if the bulk liquid is viscous, surface tension gradients induce 
bulk liquid motion, usually referred to as Marangoni convection. Since the surface 
tension depends on temperature and composition of the fluids at the interface, 
practically everywhere where gas-liquid interfaces are in the picture, Marangoni 
effects become visible. Strong wine creeps up the wall of a glass (the ‘wine glass’ 
effect, Thomson 1855), fast movements occur near the wick of a burning candle and 
small surface-crawling insects can be seen moving rapidly to safety to waterplants on 
the back of a film drawn by Marangoni convection once the water is suddenly 
polluted by surface active components. 

Marangoni flows can be classified into two types : macro-scale flows and micro-scale 
flows (Berg 1972). This classification does not refer to the ultimate form of the 
convection but to its origin. Macro-scale convection is brought about by macroscopic 
scale asymmetry, e.g. by geometric asymmetry of the bulk phases about the interface 
(as in the ‘wine glass’ effect) or by an asymmetry in boundary conditions. An 
example of the latter is the thermocapillary convection in a differentially heated 
cavity. Micro-scale convection is triggered by an instability. This Marangoni 
instability was recognized by Block (1956) and Pearson (1958), to be a cause of 
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cellular convection developing in a motionless liquid layer heated from below. The 
critical conditions for the onset of this instability are formulated as the value of a 
dimensionless Marangoni number Ma,  a ratio of the interfacial driving force and 
dissipative forces. The physical mechanism of this instability is well known (Davis 
1987) and the instability is also known to be the predominant factor (Koschmieder 
1974) of the formation of hexagonal cells observed by BBnard in the early 1900s. 

Surface-tension-driven flows are of importance in many sections of the process 
industry. A few examples are considered here. I n  chemical engineering, the 
magnitude of the interface between different phases and the consequent rate of mass 
transfer is a high-valued design criterion. The Marangoni effect can improve or make 
worse the expected rate of mass transfer dramatically (Zuiderweg & Harmens 1958 ; 
Patberg et al. 1983). Also the influence of Marangoni convection is spectacular in the 
formation of holes in the compact-disk technology. Here, by lasers, very small spots 
on thin metal layers, spread over a polymer substrate, are heated up above the 
melting point of the metal. The resultant surface tension then becomes very low and 
thus the liquid metal is withdrawn from the illuminated spot. A craterlike point 
results. Other areas where Marangoni flows are important are the containerless 
processing of crystals, combustion, welding and the behaviour of thin films. 

Flows originating from the Marangoni instability are also interesting from a more 
theoretical point of view. They can be placed within a group of other flows in which 
transitions are studied from simple to more complicated flows as some driving force 
(say measured by a dimensionless number R) is increased. The aim of these studies 
is to understand the development from laminar to  turbulent flow. Examples are the 
Taylor-Couette flow and the buoyancy-induced flow in a saturated porous medium 
(or Newtonian liquid) heated from below (Rayleigh-BBnard flows). 

These flows have been used to study a large number of nonlinear problems. 
Typically, a simple base flow (which is the only stable flow at small R)  becomes 
unstable a t  some critical value of R. As R is increased, steady cellular patterns 
develop over a range of R and experiments show that some patterns seem to be more 
preferred than others, i.e. there is a selection of patterns through nonlinear 
interactions. 

For Rayleigh-Be'nard convection in large-aspect-ratio containers, the pattern 
selection process is well understood and theory and experiment are in good 
agreement (Cross et al. 1983). The situation is different for small-aspect-ratio 
containers, where both theoretical and experimental work is scarce. Here, changes in 
the flow pattern are highly restricted by the presence of the lateral walls. The case is 
interesting, however, because the dynamics is governed by the interaction of a few 
modes (the number depending on the distance from onset) and a link with the 
behaviour of dynamical systems of low dimensionality can be made. 

In  this paper the problem of pattern selection in small-aspect-ratio containers is 
addressed for flows driven by surface-tension gradients. Because of computational 
resources, we restrict ourselves to  two-dimensional containers. Although Ray- 
leigh-B8nard-Marangoni flows are basically three-dimensional, our study has 
physical relevance. I n  experiments, especially if the width of the container is small 
compared to its length, typically two-dimensional patterns are observed. Fur- 
thermore, two-dimensional results give insight into processes that govern convection 
dynamics in these confined flows and are a necessary starting point for any three- 
dimensional calculation. Finally, many three-dimensional flows result from insta- 
bilities of corresponding two-dimensional flows. 

The dimensionless parameters characterizing the system are in this case the 



Cellular solutions in Rayleigh-Bdnurd-Marungoni flows 75 

stability parameter Mu, the Biot number Bi, the Prandtl number Pr and the aspect 
ratio A .  Given any set of values of these parameters, the main question is now many 
realizable (i.e. stable) flow patterns do exist. Since the motionless conduction solution 
is a solution for all values of the parameters, the first step to answer this question is 
to calculate the onset conditions of convection, i.e. the critical values of Ma. Results 
are well known (cf. figure 2) and depend only on A and Bi. 

A t  specific values of (A,Bi )  two flow patterns (modes) have the same onset 
conditions. A nonlinear analysis of the possible flow patterns in the vicinity of these 
so-called double points gives insight into the qualitative change of the bifurcation 
structure in parameter space. This approach was followed by Rosenblat, Homsy & 
Davis (1982) for a container with ‘slippery ’ sidewalls in the limit Bi = 0. Amplitude 
equations (cf. equations (10a, b )  in the present paper) were obtained describing the 
mode interaction near certain double points. The local bifurcation structure was 
determined and it was found e.g. that Hopf bifurcations occur close to onset. 

The analysis in Rosenblat et al. (1982) has two limitations. First, the results are 
only valid locally near the double point and the analysis itself does not provide the 
range of validity. It is therefore impossible to study the change of bifurcation 
structure with A (for fixed Bi and Pr)  far above onset. Second, ‘no-slip’ lateral walls 
are expected to influence the dynamics and therefore the multiplicity of solutions 
essentially. The presence of ‘no-slip’ walls lowers the symmetry of the system with 
respect to ‘slippery ’ walls and new features (e.g. convection below onset (Winters, 
Plesser & Cliffe 1988; Dijkstra & Van de Vooren 1989)) are known to occur. 

Knowledge of the bifurcation structure far above onset and the influence of ‘no- 
slip ’ lateral walls can only be obtained numerically. By performing these calculations 
using continuation methods, this study contributes to this knowledge. Continuation 
methods have already proved to be successful in other type of systems, e.g. the 
Taylor-Couette flow (Cliffe 1983) and Lapwood convection (Riley & Winters 1989). 

The paper is organized as follows. In  $2, the formulation of the problem is 
presented. Linear stability theory is reviewed briefly in $3. Numerical methods are 
outlined in $4 followed by $5 where a justification of the accuracy of the numerical 
solutions is presented. In $6, the change of bifurcation structure with A is presented 
for a container with ‘no-slip’ sidewalls and for fixed Bi = 20 and Pr = 8. The 
exchange mechanism at double points, the origin of Hopf bifurcations and the 
occurrence of hysteresis are studied in more detail. Section 7 describes the influence 
of the lateral walls by comparing the bifurcation structures obtained for ‘slippery’ 
sidewalls with those for ‘no-slip’ sidewalls. For a square container the change of 
bifurcation structure with the secondary parameters Bi and Pr is determined. It is 
shown that small Pr and small Bi promote the occurrence of multiple stable steady 
states. 

The main result of this paper is that ‘no-slip’ sidewalls greatly influence the 
multiplicity of stable steady patterns. Typically they limit the range of existence of 
patterns consisting of an odd number of cells through the occurrence of saddle node 
bifurcations. In this way the 2-cell pattern with centre upflow is preferred (i.e. the 
only stable pattern) over a large area in (Ma,A)  space. 

2. Formulation 
A two-dimensional container (figure 1) is partially filled with a Newtonian viscous 

liquid. Above the liquid is an ambient gas ; the constant temperature of this gas far 
from the gas-liquid interface is T,*. By heating the bottom wall of the container up 
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FIGURE 1. Geometrical set-up, coordinate axes are defined. Gravity points in 
the negative z-direction. 

X 

to a temperature T:, a vertical temperature gradient is created over the layer. Heat 
is transferred from the liquid to the gas. The heat transfer coefficient at the interface 
is denoted by 7. The sidewalls are assumed to be perfectly insulated. Let H and L be 
the height and length of the liquid layer, respectively. 

The dynamic viscosity ,u and thermal diffusivity K of the liquid are constant. The 
density p of the liquid depends linearly on temperature, i.e. p = po-al(T*-T,*).  We 
consider density variations only through buoyancy, whereas the liquid is assumed to 
be incompressible (Boussinesq approximation). 

The equilibrium surface tension CT, of the gas-liquid interface is assumed to  be 
large (the capillary number C = ,uK/uoH is assumed to be small). In  this large- 
surface-tension limit, the interface does not deform. Surface tension depends linearly 
on the interface temperature, i.e. u = a,-a,(T*-T,*). 

We non-dimensionalize velocity, time and length by K/H,  H 2 / c  and H ,  
respectively. A non-dimensionless temperature T is given by T * = T ( T t  - T,*) + T,*. 
A streamfunction $ and a vorticity w are introduced. If u and w are the horizontal 
and vertical velocities then u = a$,/az, w = -a$/ax and w = aw/ax-au/az. 

The governing equations of the flow in the container are 

aT 
= V2w+Ra -, 

O ax 

At the bottom wall z = 0:  T = 1, $ = - = 0. 
az (1 4 

At the gas-liquid interface z = 1 : 

At the sidewalls x = 0, A : 
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In these equations, the dimensionless groups Pr (Prandtl), Ma, (Marangoni), Ra, 
(Rayleigh), A (aspect ratio) and Bi (Biot) appear which are defined as follows 

L A = -  
H ’  

a,H(T:-T,*) 
Pr = -, P Ra, = a,gH3(T:-T,*) , Bi=-, 7H Mao= 

P o K  P K  K P K  

(2) 

where g is the acceleration due to gravity. A parameter E is included in the last 
boundary condition of ( I f )  to distinguish easily between the two cases of ‘no-slip’ 
( E  = 1) and ‘slippery’ sidewalls ( E  = 0). 

There are two types of symmetry in this problem. First, there is a Z,-symmetry, 
due to reflection with respect to the line x = $4, having a representation W given by 

W($(5’ 4, T(z ,  2))’ = ( -$ (A  -5, 4, T(A -5, qT. 
This symmetry is present for both values of E .  For E = 0 there are additional 
translational symmetries with representations Ykm given by 

Yk,($(x, z ) ,  T(z ,  2))’ = ($(x+kA/m, z ) ,  T(z+kA/m, z)IT 

where m is the number of cells and k = 1, ..., m-1 form 2 2 and k = 1 form = 1. In 
this way a container with ‘slippery’ sidewalls can be considered as an infinite layer 
with artificial periodicity A .  A more detailed description of symmetries in similar 
flows can be found in Riley & Winters (1989) and in Golubitsky & Schaeffer (1985). 

= 0) and the temperature distribution is 
due to pure conduction. The conduction solution is given by 

Initially, the liquid is motionless (3 = 

Bi 
T(2) = l-- 

Bi+ 1 z. (3) 

The solution ($, a, T) defines the primary branch of steady solutions. This solution 
is invariant under the symmetries given by W and Ykm. Bifurcation points on this 
branch are referred to as primary bifurcation points. For 8 = 0 a translational 
symmetry is always broken in a primary bifurcation point. For 8 = 1, symmetry 
breaking primary bifurcations occur only when the Z,-symmetry is broken. 

In  the formulation above, the Marangoni number Ma, is different from that 
introduced by Pearson (1958), say denoted by Ma, which is commonly used in the 
literature. The relation between the numbers is simply Ma =Ma, Bi/(Bi + 1). In the 
same way, Ru = Ra,Bi/(Bi+ 1). There is a good argument for using Mu, as the 
stability parameter instead of Mu. Of course, both Marangoni numbers differ only a 
factor (Bi+ 1)/Bi if Bi =k 0. However, if Bi = 0 (i.e. 7 = 0) ,  the base state (3) is a 
constant-temperature state. For the infinite layer this state is linearly stable (Vidal 
& Acrivos 1956) and since Mu has a minimum at Bi = 0 for this case (Nield 1964) 
there seems to be a contradiction. However the stability is predicted correctly using 
Ma, because Mu,+ as Bi+O. The finite value of Ma at Bi = 0 is therefore due to 
the fact that Mu and Bi are not independent parameters. 

3. Linear stability 
The linear stability characteristics of the basic state (3) are well known. The 

equations (1 u-f ) linearized around (3) describe the evolution of infinitesimdly small 
disturbances superposed on the base state. These linearized equations admit 
solutions proportional to exp (yt) ,  where y = Re ( y )  + i Im ( y )  is the complex growth 
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FIGURE 2. Curves of primary bifurcation points as a function of aspect ratio A ,  
for Bi = 20 and ( a )  E = 0 and ( b )  E = 1. 

factor. Neutral stability occurs for Re ( y )  = 0. It is well known that for E = 0 the 
principle of exchange of stability is valid, i.e. Im ( y )  = 0 at neutral stability. This is 
not known for the case e = 1. However, for the parameter region which is considered 
here, the numerical results in $6  show that (3) becomes unstable only through 
stationary modes. When Im ( y )  = 0, the neutral curves can be found by solving an 
eigenvalue problem involving the parameters Ma,, Ra,, Bi and A,  i.e. the onset 
conditions are independent of Pr. 

The methods of analysing this eigenvalue problem are presented elsewhere, for 
e = 0 see Nield (1964) and for E = 1 see Van de Vooren & Dijkstra (1989). For 
later reference the critical values of Ma, are shown as a function of A for Ra,  = 0 ,  
Bi = 20 in figure 2 ( a )  for E = 0 and in figure 2 (b)  for e = 1. If we draw a vertical line 
a t  a certain fixed A ,  the intersections of this line and the eigenvalue curves represent 
primary bifurcation points. Examples are the points P in figure 2 ( b )  which will be 
referred to below. The corresponding eigenvector provides the pattern of the flow to 
which (locally near this bifurcation point) the motionless solution will be unstable. 
For E =  0 this pattern is constant along an eigenvalue branch (n in the figure 
indicates the number of cells). For E = 1 the pattern changes along a particular 
branch (Van de Vooren & Dijkstra 1989) (the roman numerals serve only to label 
different branches). 

The value of Ma, a t  the first primary bifurcation point corresponds to onset 
conditions for the particular aspect ratio A .  For a value of Ma, slightly larger than 
the one at onset the flow pattern with largest growth factor Re(y) corresponds to 
that a t  onset. In  this way linear theory suggests a selection of observable patterns. 
However, it is well known that as the amplitudes of the disturbances grow, the final 
steady state reached might be different than the fastest growing pattern a t  onset. In 
addition, there are certain values ofA, where linear theory is ambiguous in predicting 
the fastest growing pattern. In both figures 2(u)  and 2(b) there exist values of the 
aspect ratio A, so-called double points, where two patterns become unstable a t  the 
same value of Mu,. Hence, linear theory cannot predict which finite-amplitude 
steady-flow patterns will eventually appear. For E = 0, the 1-cell and 2-cell patterns 
become simultaneously unstable at A: = 1.56; for the 2-cell and 3-cell patterns this 
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occurs a t  AO, = 2.70. For 8 = 1,  these double points occur at A t  = 1.74 and A: = 2.94, 
respectively. In  numbering the A-values of double points, the superscript refers to 
the value of E .  

4. Numerical methods 
The rectangle [O,A] x [0,1] is covered by a (non-equidistant) grid with lines 

parallel to the x- and z-axis. A gridpoint has subscripts (i ,j) ,  i = 0 , .  . . ,n and 
j = 0 , .  . . , m. By using the mapping’ 

y = ++ tanh [q(Q-i)]/[2 tanh (&)I 
a non-equidistant grid in y is obtained from an equidistant one in d .  These non- 
equidistant grids were employed in both the x- and z-direction ; the stretching 
parameters q are indicated below by qz and qz. 

The discrete version of the equations (la-f) is obtained using a finite-volume 
discretization method. The scheme (presented in Dijkstra 1988) is second-order 
accurate in space. Not only are the discrete energy equation and the discrete 
continuity equation satisfied exactly over the internal control volumes but also near 
the boundaries. The discrete equations have the symmetry properties of the 
continuous equations. 

After discretization a system of nonlinear algebraic equations emerges which can 
be written as 

with u E Rd,  d = 3(n + 1) (m + l),  p E R5 and @ : Rd x R5 + Rd. Here u consists of values 
of @, w and T a t  the gridpoints and p contains the parameters (Pr, A,Ma,, Ra,, Bi) .  

We consider system (4) as a bifurcation problem and compute branches of 
solutions (u ( s ) ,p ( s ) )  of these equations, parametrized by a ‘ pseudo-arclength ’ 
parameter s, with continuation techniques. Here Euler-Newton continuation is used, 
a method well described in Keller (1977). 

The investigation of the linear stability of a solution of (4) on a particular branch 
amounts to solving a generalized eigenvalue problem of the form 

W , p )  = 0, (4 ) 

AU = XDU. (5)  

Here A is non-symmetric, banded and non-singular, while D is a singular diagonal 
matrix. The zeros on the diagonal of D arise through the incompressibility constraint 
and the Dirichlet boundary conditions. 

To draw conclusions about linear stability one need not solve the eigenvalue 
problem completely. Only a few ‘most dangerous modes ’, i.e. the eigenvalues closest 
to the imaginary axis have to be determined. The calculation of these eigenvalues for 
very large non-symmetric eigenvalue problems received a lot of attention recently 
(Goldhirsch, Orszag & Maulik 1987 ; Christodoulou & Scriven 1988). A relatively 
simple method is used here. First a mapping is defined by 

7-1  
X = , + 1 ’  for 7 E C / {  - l}. 

The half-plane @-, the imaginary axis and the half-plane @+ are mapped onto 
171 < 1, 171 = 1 and 171 > 1,  respectively. The problem ( 5 )  is now reduced to the 
calculation of the dominant eigenvalues 7 of the eigenvalue problem 

- ( A + D ) u  = T(A-D)u.  (7) 
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This is solved in the following way. Start with a number of vectors equal to the 
desired number of eigenvalues (usually 4-6). Now, because (7) contains infinite 
eigenvalues, components in the directions of the corresponding eigenvectors are f i s t  
filtered out of the starting vectors by inverse iteration. On the remaining vectors the 
simultaneous iteration technique (SIT) (Steward & Jennings 1981) is applied to 
determine the dominant eigenvalues of (7). To obtain a matrix vector product needed 
during the filtering stage of the SIT, the matrix A-D has to be decomposed. 
However, this decomposition can be saved throughout the SIT and therefore has to 
be computed only once to determine the dominant eigenvalues of (7). The residual 
error was determined by backsubstitution of the eigensolution into the original matrix 
equations ( 5 ) .  As stopping criterion for the SIT this error divided by the L,-norm of 
the corresponding eigenvector was required to be smaller than The simultaneous 
iteration works well if a good approximation of the eigenvectors and eigenvalues is 
available. The continuation technique provides these approximations. One only has 
to start once with random vectors for which the algorithm does indeed take the most 
time. 

If all eigenvalues have negative real parts, the steady state is linearly stable. If a t  
least one eigenvalue has a positive real part, the steady state is unstable. Hopf 
bifurcation points (where a complex pair of eigenvalues u = E+i7 crosses the 
imaginary axis with aE/as > 0, where s is the arclength parameter) are detected by 
applying a secant algorithm to locate the point s where 5 = 0. Simple bifurcation 
points and limit points were calculated by applying a second iteration to find a zero 
of det (A)  and Ufuo/as, respectively. 

Continuation of normal limit points in a secondary parameter 6 was done using 
‘pseudo ’ arclength continuation on the extended system proposed in Moore & Spence 
(1980). This amounts to solving the following system of equations : 

@ @ 7  A7 5) = 0, Gu(u,h, 5) d = 0, b) 
43  = 1, (u-~,)T~o+(d-d0)Ti0+(~-hO)~O+(5-50jO)~o = 0, (8c,  4 

where mu is the Jacobian of (4), h is the primary parameter (usually Mu,), the dot 
indicates differentiation to the ‘ arclength ’ parameter B and the subscript 0 indicates 
a known solution along the branch of limit points. A starting point is provided by the 
solution a t  a specific limit point and the eigenvector corresponding to the zero 
eigenvalue in the corresponding stability problem. A starting tangent (ti, 4, A, $) is 
found by solving the linear system which emerges after Newton linearization of (8) 
with right-hand side (0, 0, 0 , l ) .  Thereafter this tangent is normalized with respect to 
the L,-norm. The particular value of k in (8c )  was taken to be the absolute largest 
component in the starting vector 4. 

The solution method of the system (8) via the Newton method and decoupling of 
linear systems as given by Moore & Spence (1980) was used. Basically, a modified 
matrix &u (the matrix eU with the kth column replaced by @,J has to be decomposed. 
However, although @u is banded, &u is not, and decomposing 6, would increase the 
computational time enormously. To avoid this, &u was block-decomposed (taking 
effectively its kth row and column out, restoring the bandedness) and the remaining 
matrix system was solved in block form. In  this way, only two decompositions of a 
banded matrix had to be computed per Newton step. 

Continuation of Z,-symmetry breaking bifurcation points was done also using the 
extended system (8). However, now the solution u has to belong to one symmetry 
class, whereas the kernel 4 has to belong to the other class (Werner & Spence 1984). 
This was implemented by restricting the equations to the domain [0,$4] x [0,1] and 
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n m 9z 

16 16 1 
32 32 1 
64 64 1 

32 16 1 
64 16 1 

128 16 1 

16 16 1 
16 16 3 
32 32 1 
32 32 3 
64 64 1 
64 64 3 
16 8 3 
32 16 3 
64 16 3 
64 32 3 

results (Winters et ul. 1988) 
32 16 3 
64 16 3 

128 16 3 
results (Winters et ul. 1988) 

32 8 3 
64 16 3 

128 32 3 

exact 

exact 

9, 
3 
3 
3 

3 
3 
3 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

3 
3 
3 

3 
3 
3 

results (Van de Vooren & Dykstra 1989) 

A 

1 
1 
1 

4 
4 
4 

1 
1 
1 
1 
1 
1 
2 
2 
2 
2 

3 
3 
3 

4 
4 
4 

Bi 
20 
20 
20 

20 
20 
20 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 

20 
20 
20 

E 

0 
0 
0 

0 
0 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 

1 
1 
1 

MU01 

788.91 
783.01 
781.66 
781.18 
811.41 
788.91 
783.36 
781.18 
488.11 
446.47 
441.07 
429.48 
428.72 
425.62 
310.81 
296.02 
293.05 
292.81 
291.52 
261.81 
256.40 
255.07 
254.00 
890.47 
843.89 
832.17 
826 

MU02 

1438.9 
1403.4 
1394.8 
1391.9 
825.29 
810.95 
807.43 
805.77 
- 
- 
- 
- 
- 
- 

370.55 
340.05 
334.04 
332.90 
330.76 
315.40 
305.02 
302.50 
300.71 
910.84 
851.99 
837.86 
83 1 

TABLE 1. Values of Mu, for the first two primary bifurcation points on different grids (n, m) for 
various values of Bi, E and A .  The quantities 9;: and 9; are stretching parameters. If the value of 
a stretching parameter is 1, the grid is equidistant. 

applying the boundary conditions which have to be satisfied by each member of the 
symmetry class at x = $4. Let 8 = T- T, then these boundary conditions are: 

(9a) 
(96) 

For + even and 8 odd: $, = w, = 8 = 0, 
For + odd and 6 even: $ = w = 8, = 0. 

The system of linear equations after Newton linearization of (8) was solved along the 
guidelines given by Werner &, Spence (1980) through the decoupling of the linear 
systems. A starting point and starting tangent were found in the same way as was 
done in the limit point continuation. 

5. Justification of numerical solutions 
Values of Ma, at the first two primary bifurcation points (Ma,,,Ma,,) calculated 

with different (non-equidistant) grids were compared with existing analytic and 
other numerical results. In table 1 ,  the results of these grid studies are shown in 
comparison with work in Winters et al. (1988) and Van de Vooren & Dijkstra (1988). 
It is observed that a 32*A x 16 grid gives sufficient accuracy in the primary 
bifurcation points and these grids were used in most of the computations below. In 
addition, if B = 0 the choice q, = l ,q ,  = 3 is adequate whereas for B = 1 the choice 
qz = 3,qz = 3 gives better results. 

In  the nonlinear regime, solutions at a particular branch were compared with 
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Type of Amplitude 

PO, 87.71 87.25 86.73 
PO, 95.72 95.57 95.36 
SO, 89.39 88.87 87.83 
SO, 104.18 100.83 101.86 
HO 90.66 90.15 89.61 

singularity/grid 32 x 16 64 x 16 equations (10) 

TABLE 2. Comparison of the values of Mu at singularities in the bifurcation pictures in 
figure 3(u) A = 2.4, Bi = 0, Ruo = 0, E = 0, qz = 1 ,  q, = 3 and Pr = 10 

solutions obtained from a transient code as reported in Dijkstra & Van de Vooren 
(1989). Unfortunately, we cannot compare our results directly with those in Winters 
et al. (1988), because the value of Pr used in these calculations is not reported. 

The comparison of our numerical results and the results from local bifurcation 
analysis reported in Rosenblat et al. (1982) is presented in more detail for later 
reference. Focus is on the case Bi = 0, Pr = 10 and A near the double point at  A! = 
2.25. At this point the 1- and 2-cell patterns compete. A weakly nonlinear analysis 
provides the following amplitude equations (Rosenblat et al. 1982) 

B; = c1[T- (0 + 1) A ]  B, + C, B, B, - C, B: - c4 B, Bi, 

BL = d,[T+ (1 - 0 )  A ]  B, -d,B: -d, B?B, -d4  Bi, 
(10a) 

(10 b )  

where the B, and B, represent the amplitude of the competing l-cell and 2-cell 
patterns and the coefficients c,, d, are all positive. Furthermore, d = ;(Ma, -Mu,), i.e. 
half the difference of values of Ma at primary bifurcation points (at a chosen A ) ,  r 
measures the distance from onset and 0 = sign ( A  -A:) .  The numerical values of 
the ci, d, depend on Pr and are presented in table 3 of Rosenblat et al. (1982). 

The bifurcation structure of (10) was determined numerically with standard ODE- 
bifurcation software. For A = 2.4 and A = 2.5 the amplitudes of the B, are shown as 
a function of r in the figures 3 (a)  and 3 ( b ) ,  respectively. In these figures primary, 
secondary and Hopf bifurcations are indicated by the labels P, S and H ,  respectively. 
Figure 3 (a)  ( A  = 2.4) looks indeed like the sketch in figure 9 of Rosenb1at.d al. (1982). 
However, there is an additional bifurcation point (So,) stabilizing the 2-cell pattern 
at larger r which was not shown in Rosenblat et al. (1982). So, and So, move towards 
each other with increasing A ,  coalesce and at A = 2.5 (figure 3b)  the secondary 
branches no longer connect. This transition will be referred to below. 

The values ofMa at the singularities for A = 2.4 calculated from (10) are compared 
in table 2 with those calculated using the numerical methods described in the 
previous section. The agreement is satisfactory and the amplitude equations have 
indeed a surprisingly large domain of validity. It seems that the local theory is valid 
up to A = 2.4 and up to Ma = 100. Furthermore, these figures also explain the 
apparent disagreement we previously reported in Dijkstra & Van de Vooren (1989) ; 
the amplitude equations had not been explored fully in Rosenblat et al. (1982). 

6. Results 
The results are presented in the form of bifurcation plots, with Ma, on the 

horizontal axis and a quantity W on the vertical axis. Here W is the value of the 
vertical velocity at  the specific gridpoint (b, $). Solid lines indicate stable branches, 
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while dashdot  lines indicate unstable branches. For all the singularities on the 
branches shown in each bifurcation picture those labelled with a P ,  S, L and H are 
primary bifurcation points, secondary bifurcation points, limit points (saddle node 
bifurcations) and Hopf bifurcation points, respectively. Sometimes E is used to 
denote a computational endpoint of a particular branch in the plot. 

The patterns shown in the figures are contour plots of the streamfunction. If Y,,, 
is the maximum of the streamfunction on the grid, then the solid contour lines are 
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FIGURE 4. Bifurcation diagrams and flow patterns of steady solutions for 6 = 1, Bi = 20 and 
Pr = 8. (a) A = 1, (b )  A = 2, (c) A = 3. 

at levels 0.95, 0.7, 0.5, 0.3, 0.1, 0.001 of the value of Y,,,. The dashed lines connect 
negative streamfunction values at  the same levels as the solid lines. 

6.1. Bifurcation structure for rigid sidewalls; Bi = 20, Ra, = 0, Pr = 8 
The structure of steady solutions for a square container ( A  = 1) is shown in figure 
4(a). At P,, there is a pitchfork bifurcation, two 1-cell patterns stabilize as the 
motionless solution gets unstable. On the upper branch P,,-S, the stable pattern 
near P,, consists of a clockwise rotating cell. With increasing Ma,, a second cell 
develops in the upper left-hand corner and grows as S,  is approached. At  S, the 
pattern consists of two cells with centre upflow, which is, for further reference, 
indicated by the 2,-cell pattern. The pattern change along the lower branch P,, -S,  
is just the image (under the reflection through 5 = 14) of that of the upper branch 
Pll-S,; this gives again the 2,-cell pattern at S,. At P,,, a transcritical bifurcation 
point, two unstable 2-cell patterns branch off. Whereas the branch P12 -El consisting 
of a 2-cell pattern with centre downflow (from now on the 2,-cell pattern) remains 
unstable, the 2,-cell pattern stabilizes at the secondary bifurcation point S,. 
Considering realizable (i.e. linearly stable) flow patterns, there is a gradual transition 
from one of the 1-cell patterns to the 2,-cell pattern (with increasing Mu,). 

Inspection of figure 2(b) shows that as the aspect ratio increases the primary 
bifurcation points P,, and P,, of figure 4(a) move towards each other and at  
A: z 1.74, they coalesce. Since the type of bifurcation is not changed as A crosses A:,  
the primary bifurcation point P,, in the bifurcation structure for A = 2 (figure 4 b) is a 
transcritical bifurcation point whereas P,, is a subcritical pitchfork. Along the branch 
P,, -E3, the 2,-cell pattern now stabilizes after L,. Since theMa, value of L, is smaller 
than that of PZl, there is stable steady convection below onset. Along the branch 
PZl-Szl, the 2,-cell pattern is stable. After becoming unstable at S,,, it regains 
stability at S,, where two small cells appear in the upper corners. Finally, this 
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A 
FIGURE 5. The paths of primary bifurcation points P,, and Pzz and the limit point L, 

(see figure 46) as a function of A for Ra, = 0, Bi = 20 and Pr = 8. 

solution becomes unstable through a Hopf-bifurcation a t  H22.  At PZ2, two Z,-related 
unstable 3-cell patterns branch off subcritically. Along each branch, a cell in the 
upper corner decays, whereas the one in the other corner grows. These solutions 
stabilize through a Hopf-bifurcation at  H,,,  and are connected at  S,, to the 2,-cell 
pattern. Additional branches appear a t  the third primary bifurcation point a t  
Mu, = 1401.6, but remain unstable (up to Mu, = 1700) and are not shown. 

The primary bifurcation points interchange again at A:  x 2.94. In the bifurcation 
picture of A = 3 (figure 4c) the first primary bifurcation point P,, is a pitchfork and 
P32 is transcritical. There is still stable convection below onset, because the Ma, value 
at L, is smaller than that of I?,,. The pattern change along the unstable branch 
P,,-8, is basically the same as along the branch PZ2-S2,  in figure 4(b)  except that 
the two corner cells are relatively larger. Along the branch Pa, - S, - L, - E,  the two 
corner cells, present near P32, disappear as the solution stabilizes. Along the branch 
P,,-E, the corner cells grow to a 4-cell pattern, which remains unstable up to 

6.2. Hysteresis 
Stable convection below onset, which gives rise to hysteresis effects, occurred at 
A = 2 (figure 4 b )  and A = 3 (figure 4c). The complete range of aspect ratio where 
hysteresis occurs is shown in figure 5.  The path of the limit point L, (in figure 4b)  was 
continued on a 128 x 16 grid and the values of the points P were taken from Van de 
Vooren & Dijkstra (1989) (these are extrapolated values). Hysteresis becomes 
approximately non-zero at  the first double point A:, increases with A until the next 
double point A', and vanishes slightly above A = 3.0. It is known (Davis 1987) that 
for a layer of infinite horizontal extent (A  + a), a region of subcritical instabilities 
is possible for pure Marangoni convection, because the energy stability limit is 
smaller than the linear stability limit. Here, this region is restricted to a particular 
range in aspect ratio. Note that the neutral curve structure is very important in this 
respect. The limit point follows the path of the primary bifurcation point P,, and 
therefore the region in aspect ratio where hysteresis occurs is well approximated by 
the region between the double points (A;-A:) .  

Mu, = 1000. 
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FIGURE 6. Paths of the bifurcation points as a function of aspect ratio A .  For clearness, the 
intersection of the vertical line with the curves are bifurcation points in figure 4 (6). (b) Closeup of 
(a) near A = 2.0. The (short) solid curve in (b) is a branch of limit points. 

6.3. Modal exchange 
How do the pictures of figures 4(a), 4(b)  and 4 ( c )  transform into each other as the 
aspect ratio is varied 1 In particular, how do the positions of the bifurcation points 
change with A ? To answer these questions the paths of primary bifurcation points 
P and secondary bifurcation points S were calculated as a function of aspect ratio. 
The change of the Hopf bifurcation points H with A was calculated as follows. First 
a regular point nearby H was continued in A up to a prescribed value of A .  Thereafter 
the point H at  this new value of A was detected in the usual way. Results are shown 
in figure 6 for a 64 x 16 grid. Figure 6 ( b )  is a close up of a part of figure 6 ( a ) .  

From A = 1 up to A: = 1.74, the qualitative bifurcation picture is the same as 
figure 4(a). A t  A = A:, the two primary bifurcation points P,, and P,, and the 
secondary bifurcation point S ,  of figure 4 ( a )  intersect. The unfolding of this 
singularity (cf. Guakenheimer & Holmes 1983, pp. 364-376) for A - A :  > 0 gives a 
secondary bifurcation point and a Hopf bifurcation point which move (figure 6b)  
with increasing A to the points S,, and H,, at A = 2.  
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FIGURE 7. Bifurcation pictures for E = 1, Ra, = 0, Bi = 20, Pr = 8. (a)  A = 2.07, ( b )  A = 2.1. 
Again solid curves indicate stable branches. 

I n  figure 4 ( b ) ,  new singularities have appeared within the computational range, i.e. 
the secondary bifurcation point S,, and the Hopf bifurcation point H,,. Figure 6 ( a )  
shows that S,, and S,, move towards each other with increasing A and finally 
coalesce at A: z 2.085. The detailed picture of the transition near this point is shown 
in figure 6 ( b ) .  The continuation of the branch P,, - H,, -A",, (figure 4 b )  to  A = 2.07 
is shown in figure 7 (a) .  Two additional limit points (L,) are observed, whereas Pzl, H,, 
and S,, have moved to P,, H ,  and S,, respectively. These limit points appear near 
A = 2.06 (figure 6 b ) .  The intersection of the paths ofS,, and#,, (at A:) is (numerically) 
close to the intersection point of the paths of L,  and H,. Near A:, the Hopf 
bifurcations disappear. 

The new qualitative behaviour is seen in figure 7 ( b ) ,  where the bifurcation picture 
for A = 2.1 is plotted. The limit points L, in figure 7 ( a )  have moved to the points L,, 
in figure 7 ( b ) .  The Hopf bifurcation point H,, in figure 4 ( b )  has moved to H, .  The 
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FIGURE 8. Transition patterns at the Hopf bifurcations together with the base state (larger picture 
in the middle). The time is in units n/w, and t = 0 in the figure top left-hand side, t = 0.25 in the 
figure top right-hand side, t = 0.75 in the figure bottom left-hand side and t = 1 in the figure bottom 
right-hand side. (a)  A = 2.0, Ma,, = 1051.5, oo = 5 . 9 2 ~  at H,, (in figure 4b). (b) A = 2.1, 
Ma, = 1513.9, oo = 2.70 x at H ,  (in figure 7b).  

branches through L,, now connect to the secondary bifurcation point S, (figure 7 b) 
which now appears within the computational range. 

The path of the points S, and H,, are also shown in figure 6(a ) .  At A: x 2.5, these 
paths coalesce and the Hopf bifurcation points thereby disappear. The Hopf 
bifurcation points disappear in the same way at A: x 1.8 where the paths of H,, 
and the secondary bifurcation point S,, (figure 4b)  coalesce. At  the double point 
A; = 2.94, S, crosses the primary branch to give the picture in figure 4(c). 

In summary, in figure 6 there are several higher codimension ( 2 2) bifurcations. At 
A: and At there is a steady state/steady mode interaction (or a double zero 
eigenvalue). A t  A: and A: there is a Hopf/steady state mode interaction (or a pure 
imaginary pair and a zero eigenvalue). The results indicate that at  A: a global 
bifurcation occurs. 

6.4. Transition to time-dependent flow near aspect ratio 2 
Time-periodic convection patterns branch off near the detected Hopf bifurcation 
points. The spatial structure of these periodic solutions close to onset can be 
determined by investigation of the eigenvectors (wl, w,) corresponding to the pair of 
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FIGURE 9. Frequency w,, along the paths of the Hopf-bifurcations H,, and H,,  in figure 6. 

eigenvalues ( f iw,) which cross the imaginary axis. This time periodic structure is 
referred to as the transition state and given by 

(11) 
In  figure 8(u ) ,  contours of the streamfunction are plotted for several times t (in units 
n/w , )  for the transition state a t  the point H,,  (figure 46) atMu, = 1051.5; the steady 
base state is also shown (the bigger picture). In figure 8 ( b ) ,  the transition structure 
is plotted for the point H ,  (figure 76)  a t  Mu, = 1513.9. The transition structure a t  H,, 
(figure 4b) atMu, = 1609.9 is very similar to  that in figure 8 ( b ) .  Values of the angular 
frequencies wo are presented in the captions. 

The periodic disturbance in figure 8(u)  is seen to be composed of an interaction of 
two patterns, the pattern shown for t = 0 and the 2-cell centre downflow pattern. In  
figure 8 ( b )  this competition is also apparent and one pattern consists of 1 cell, the 
other of 3 cells. 

To find a periodic solution of the full nonlinear equations near the point H,,,  
trajectories were computed using the second-order Crank-Nicolson scheme used in 
Dijkstra (1988). (It turns out that  a timestep of $ of the period (2n/w,) is sufficient 
to obtain accurate solutions.) The initial conditions consist of a superposition of the 
base state a t  H,, and the transition structure multiplied by some small amplitude. 
A stable periodic solution is found near Mu, = 1051.5. This flow consists of a small 
oscillation of the cells in the container, where the right-hand cell (figure 8(u ) ,  steady 
state) becomes slightly larger and the left-hand small cell slightly smaller over half 
a period. The maximum velocity of the base state is about K / H  (m s-l), whereas 
the mean velocity qm. along the (big) middle cell is about 5.0 x lop3 K / H  (m s-l). A 
typical circulation time along this big cell is therefore x H / q ,  x 27t lo2 H 2 / ~  ( s ) .  The 
period of the oscillatory solution is 2 x / w ,  H 2 / ~  (9) near the onset of periodic flow. 
With w, = 5.92 x lop3, this period has the same order of magnitude as a typical 
circulation time. 

The dependence of the angular frequency on Mu, along the paths of Hopf 
bifurcation points in figure 6 ( a )  and figure 6 ( b ) ,  respectively is shown in figure 9. 
Initially this frequency increases with A and reaches a maximum near A = 2, 
thereafter it decreases with A until the branch ends. The angular frequency wo + 0 as 
A 4 A:. Hence the Hopf bifurcation arises from the unfolding of the double point 

$ ( t )  = sin (w, t )  w1 + cos (w, t )  w,, t E [0, 2x/w,]. 
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singularity and is not already present at the primary branch (i.e. the principle of 
exchange of stabilities is valid). 

6.5. Heat transport 
The Nusselt number Nu along the branches of figure 4 are presented in figure 10. It 
is defined as 

Nu = Bs ABt ( w T - g d z .  (12) 
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FIGURE 11. Bifurcation diagrams and flow patterns of steady solutions for ‘slippery’ sidewalls 
( E  = 0), Bi = 20 and Pr = 8. (a )  A = 1, ( b )  A = 2, ( c )  A = 3. 

As is well known, the Nusselt number is a measure of the increase in heat flux due 
to convection. In our calculations, the difference in Nu between the top free surface 
and the bottom wall for a particular steady state is smaller than 1 YO; Z,-related 
patterns have the same value of Nu. 

In most cases, the stable solutions have larger values of Nu than unstable ones. In 
addition, the 2,-cell pattern has the largest value of Nu in figures 10(b) and lO(c) .  
There is a slight decrease in heat transport in figure lO(a), accompanying the 
continuous transition from the l-cell patterns to the 2,-cell pattern. This indicates 
that the occurrence of the corner cells decreases the heat transport. 

7. The influence of the type of lateral walls and secondary parameters 
7.1. ‘Slippery’ sidewalls 

The multiplicity of stable and unstable patterns for a container having ‘slippery ’ 
sidewalls is considered next. For standard values of the parameters (Ra, = 0, Bi = 
20, Pr = 8 )  the bifurcation pictures for aspect ratio 1, 2 and 3 are presented in the 
figures 11 (a)-1 l(c),  respectively. 

Comparing the results for ‘no-slip’ sidewalls (figures 26 and 4) with those for 
‘slippery’ sidewalls (figures 2a  and l l ) ,  the following is observed: 

(i) The critical Marangoni numbers at onset are larger for ‘no-slip’ sidewalls and 
therefore the ‘ no-slip ’ condition stabilizes the conduction solution (3). 

(ii) Transcritical primary bifurcation points occur in the ‘no-slip’ case when an 
even number of cells branches off. This is due to the trivial action of the Z2-symmetry 
at  these points. All bifurcation points are of pitchfork type for ‘slippery’ sidewalls 
because of the additional translational symmetry which is broken. Hence, subcritical 
convection is absent for ‘slippery ’ sidewalls. 

4-2 
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Bi = 0 for A = 1, Pr = 8 and Ra, = 0. 

(iii) The double points at onset, where two modes compete, occur at larger aspect 
ratio in the ‘no-slip’ case. 

(iv) Double points, where both solutions have the same Z,-symmetry (e.g. a l-cell 
and 3-cell pattern) disappear in the ‘no-slip’ case. 

(v) The multiplicity of stable patterns is smaller in the ‘no-slip’ case. This is due 
to the occurrence of additional limit points and closed branches. 

The change of bifurcation pictures with aspect ratio (in figure 11) can be 
understood with reference to the results in Rosenblat et al. (1982) and figure 3 of this 
paper. We discuss only the modal exchange at the first double point a t  A! = 1.56. 
From A = 1 up to At ,  S,  (in figure 11 a)  moves towards the primary branch, crossing 
this branch exactly at the double point. For A slightly less than A!, the bifurcation 
picture is qualitatively the same as figure 8 in Rosenblat et al. (1982). Slightly above 
A!, the bifurcation picture is qualitatively the same as figure 3(a)  above. At larger 
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FIQURE 13. (a)  Paths of singular points a8 a function of Pr for A = 1, Bi = 20 and Ra, = 0 and 
( b )  the bifurcation picture for Pr = 0.1. 

values of A,  the two secondary bifurcation points (Sol and So*, figure 3a) coalesce 
and the secondary branches disconnect as shown in figure 3(b) .  At this point there 
are two stable branches, consisting of 2-cell patterns (both centre upflow and 
centre downflow) as shown in figure 11 (b). The structure of solutions becomes more 
complicated a t  A = 3 (figure l l c ) .  Two Z, related 3-cell patterns are stable over the 
computational range. Both (centre upflow and centre downflow) 2-cell solutions 
stabilize at the secondary bifurcation points S,, and SaE. From these points, two 
other stable mixed mode solutions appear which become unstable at the limit 
point L,. 

7.2. Secondary parameters (rigid aidewalla) 
For a square container (A = 1) with ‘no-slip’ sidewalls, the paths of limit points and 
secondary bifurcation points are shown as a function of Bi in figure 12(a). The 
qualitative structure remains the same for each value of Bi. The distance between the 
paths of the points L, and Plz decreases with decreasing Bi and hence for small Bi 
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hysteresis is small. If one calculates the actual picture a t  Bi = 0, where W is shown 
now as a function ofMa (figure 12b), extra limit points are present. A small value of 
Bi causes the 1- and 2,-cell patterns to be stable simultaneously. At  large Bi this 
multiplicity of stable patterns disappears (cf. figure 4a). 

Also for a square container, the paths of the relevant singularities are shown as a 
function of Pr in figure 13 ( a ) .  Relatively little changes over the range 0.5-50, so the 
bifurcation structure remains qualitatively the same. At small Pr,  the path of L, and 
that of Plz intersect. The bifurcation picture at  Pr = 0.1 is shown in figure 13(b)  and 
it indeed turns out that the limit point is now on the 2,-cell branch. Furthermore, 
there is now also a slight range inMa, where both the 2,-cell and l-cell patterns are 
stable. Hence both small Pr and small Bi promote multiple stable states to occur in 
a square container. 

8. Discussion 
By using techniques of numerical bifurcation theory the multiplicity and stability 

of cellular Marangoni flows was determined for small-aspect-ratio containers with 
two types of sidewalls. Within the computational domain considered, it is found that, 
for both type of sidewalls, multiple stable steady states do exist in certain regions of 
parameter space. For standard values of the secondary parameters (Ra, = 0, 
Bi = 20, Pr = 8) a composite figure showing the types of stable convection is given 
for ‘no-slip’ and ‘slippery’ sidewalls in figures 14(a) and 14(b), respectively. In both 
figures, open circles at  the endpoints indicate the end of the computational domain 
whereas closed circles indicate singularities (transitions in stability). Clearly the ‘ no- 
slip ’ condition at the sidewalls causes the 2,-cell pattern to be preferred over a large 
area in parameter space. This ‘selection ’ process is complicated because of its origin 
in secondary effects, in particular the occurrence of limit points. It is also absent for 
‘ slippery ’ sidewalls, where, at  each integer value of the aspect ratio, several patterns 
are stable simultaneously. 

Some physical insight into the occurrence of extra limit points for ‘no-slip’ 
sidewalls is obtained as follows. Using a simple two-dimensional model of buoyancy- 
driven convection, Drazin (1975) explained the difference between the onset 
eigenfunctions for E = 0 and E = 1. Whereas the x-dependence of the vertical velocity 
eigenfunctions are simple cosines for E = 0, those for B = 1 are a sum of 2 sinusoidal 
functions and a hyperbolic function. This hyperbolic function is exponentially small 
between the walls but accounts for the no-slip a t  the wall and hence introduces a 
‘boundary layer ’ (which might not be thin) along the walls. Consider now figure 4 (a)  
( E  = l , A  = 1). Along the upper branch P,,-S,, the amplitude of the clockwise 
rotating l-cell pattern increases. For this flow, the fluid elements are accelerated 
along the interface from left to right and therefore (at finite amplitude) the vertical 
velocity near x = A is larger than near z = 0. This asymmetry increases with Ma,, 
which can also be observed through the movement of the cell centre towards the 
right-hand wall. At  some value of Ma,, the horizontal gradient in vertical velocity 
will be influenced by the above mentioned ‘boundary layer’ and the downward 
movement along the right-hand wall is damped, thereby reducing the upward 
velocity near the left wall. The left-hand upper corner becomes relatively cool with 
respect to a point a t  the interface slightly to the right, which causes a flow to this 
corner and a small cell develops. In the same way, a small cell develops in the upper 
right-hand corner for the anti-clockwise rotating l-cell flow along the lower branch 
Pll-S,. Once these small cells are formed, either the pattern becomes unstable to the 
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endpoints, whereas closed circles indicate a transition in stability. 
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FIGURE 15. Bifurcation picture for ‘no-slip’ ( E  = 1 )  sidewalls and Ra, = 0, Pr = 8, Bi = 20 and 
A = 4 .  

2,-cell pattern (which occurs for small Bi in figure 12b) or the small cell grows and 
the pattern remains stable (at large Bi). Hence, finally both Z,-related l-cell patterns 
end up in the same secondary bifurcation point with a 2,-cell pattern. Note that the 
small cells do not appear for E = 0, because the vertical velocity is non-zero at  the 
sidewalls. 

Similar reasoning explains the transition from the 3-cell pattern to the 4-cell 
pattern with centre upflow at A = 4 along the branch P41-S41 shown in figure 15. 
Another interesting point from this figure is that the 4-cell pattern becomes unstable 
at S,, whereas two 72,-related 3-cell patterns are stabilized at L,. The wavelength of 
the preferred pattern thereby increases with increasing Ma,. 

It was demonstrated that transitions to time-dependent convection are possible 
close to onset (the path of H,, in figure 6b). The periodic solutions have their origin 
in steady state/steady state interactions. The period of oscillation has the same order 
of magnitude as a typical circulation time of the nearly steady state. Hopf 
bifurcation points also originate from Hopflsteady state interactions (the path of H,, 
in figure 6a). 

To answer the question whether the bifurcation structure changes qualitatively if 
buoyancy is added, bifurcation structures for Mu, = 0 and Bi = 1 were calculated. 
The main reason to choose this value of Bi instead of Bi = 20 was that for the latter 
value the second primary bifurcation point occurs at  large Ru, decreasing the 
numerical accuracy. In figure 16 (a), the bifurcation picture (64 x 16 grid) is shown for 
A = 2. This picture just looks like figure 4(a), except that the second primary 
bifurcation point is a pitchfork instead of a transcritical bifurcation. It can be proved 
by local analysis that this is only true if Mu, = 0 and the pitchfork is therefore 
parameter induced (cf. Golubitsky & Schaeffer 1984, p. 324 ff ). It turns out that the 
self-adjointness of the linear operator at Mu, = 0 is central in the proof. The absence 
of transcritical bifurcations implies that hysteresis is also absent. This is consistent 
with the infinite-layer results, where the energy stability limits and linear stability 
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FIGURE 16. Bifurcation pictures for pure buoyancy driven convection (Mu, = 0) for Bi = 1 and 

Pr = 8. (a) A = 2, E = 1, (a) A = 4. 

limits for buoyancy-driven convection are equal. Note that in the Rayleigh-BBnard 
case in a closed container with the same boundary conditions for velocity and 
temperature on the horizontal boundaries (as considered e.g. in Metzener 1980) all 
primary bifurcations are of pitchfork type because of the Z, x E, symmetry of the 
problem. 

For Bi = 1, the first double point occurs at A = 2.18. For A = 2.2, the bifurcation 
structure is qualitatively the same as that in figure 3(a) (the Hopf bifurcation 
occurring at Ra, = 2060) and for A = 2.25 qualitatively the same as figure 3 ( b ) .  



100 H .  A .  Dijkstra 

Hence the transition along the first double point is qualitatively the same as found 
for Marangoni convection. The bifurcation picture for A = 4 (128 x 16 grid) is shown 
in figure 16(b) .  Here both 3-cell patterns and the 2,-cell pattern are stable far above 
onset. This picture looks more like one of the bifurcation pictures of figure 11 
(a = 0) than of figure 4 (a = 1). This suggests that for this Bi and A the influence of the 
‘ no-slip ’ sidewalls is less for pure buoyancy-driven than for pure surface-tension- 
driven convection. 

What can we learn from these results with respect to experiments 1 Unfortunately, 
there are several factors which make a comparison with experimental work difficult. 
The geometry is different (cylindrical containers), the experimental aspect-ratio 
range is too large ( A  2 5 ) ,  there is a rigid top wall (pure Rayleigh-BBnard 
convection) or three-dimensional effects are important (width of the container is not 
small). However, some features found in the calculations have also been observed in 
experiments. 

The experimentally obtained critical temperature gradient for convection onset is 
always larger than that predicted by linear theory of the infinite layer and clearly 
due to the presence of sidewalls (Stork & Muller 1972 ; Koschmieder & Prahl 1990). 
Just above onset, there is in most cases a small region in parameter space where there 
is only one (or two Z,-related) stable pattern. Far above onset, multiple steady states 
are often observed and the change from one cell pattern to the other is often 
accompanied by hysteresis (Berg6 1975). The often observed (see e.g. Gollub & 
Benson 1980) increase in wavelength with increasing stability parameter might be 
due to secondary effects as in figure 15. Stable patterns with corner cells like those 
we found in figure 4 ( b )  are reported by Gollub & Benson (1980). Bensimon (1988) 
reports for an annular container that a change in cell pattern is accompanied by an 
annihilation of corner cells, a fact also seen in figure 4. Typically this change is along 
an unstable branch. 

The oscillatory flow found in Ahlers, Cannell & Steinberg (1985) near convection 
onset might be an example of a periodic flow caused by steady state/steady state 
interactions. Certainly, the transitions to time-periodic convection occurring at 
much larger Mu,, such as found in Ciliberto, Simonelli & Arecchi (1986), are different 
to those described here. These are certainly more related to instabilities of boundary 
layers, such as described for porous media flows in Steen & Aidun (1988). 
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